Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hazards from convective weather pose a serious threat to the contiguous United States (CONUS) every year. Previous studies have examined how future projected changes in climate might impact the frequency and intensity of convective weather using simulations with both convection-permitting regional models and coarser-grid climate and Earth system models. We build on this existing literature by utilizing a large-ensemble of historical and future Earth system model simulations to investigate the time evolution of the forced responses in large-scale convective environments and how those responses might be modulated by the rich spectrum of internal climate variability. Specifically, daily data from an ensemble of 50 simulations with the most recent version of the Community Earth System Model was used to examine changes in the convective environment over the eastern CONUS during March-June from 1870 to 2100. Results indicate that anthropogenically forced changes include increases in convective available potential energy and atmospheric stability (convective inhibition) throughout this century, while tropospheric vertical wind shear is projected to decrease across much of the CONUS. Internal climate variability on decadal and longer time scales can either significantly enhance or suppress these forced changes. The time evolution of two-dimensional histograms of convective indices suggests that future springtime convective environments over the eastern CONUS may, on average, be supportive of relatively less frequent and shorter-lived, but deeper and more intense convection.more » « less
-
Central North America is the global hotspot for tornadoes, fueled by elevated terrain of the Rockies to the west and a source of warm, moist air from equatorward oceans. This conventional wisdom argues that central South America, with the Andes to the west and Amazon basin to the north, should have a “tornado alley” at least as active as central North America. Central South America has frequent severe thunderstorms yet relatively few tornadoes. Here, we show that conventional wisdom is missing an important ingredient specific to tornadoes: a smooth, flat ocean-like upstream surface. Using global climate model experiments, we show that central South American tornado potential substantially increases if its equatorward land surface is smoothed and flattened to be ocean-like. Similarly, we show that central North American tornado potential substantially decreases if its equatorward ocean surface is roughened to values comparable to forested land. A rough upstream surface suppresses the formation of tornadic environments principally by weakening the poleward low-level winds, characterized by a weakened low-level jet east of the mountain range. Results are shown to be robust for any midlatitude landmass using idealized experiments with a simplified continent and mountain range. Our findings indicate that large-scale upstream surface roughness is likely a first-order driver of the strong contrast in tornado potential between North and South America.more » « less
-
The geosciences have the lowest racial and ethnic diversity of all STEM fields at all levels of higher education, and atmospheric science is emblematic of this discrepancy. Despite a growing awareness of the problem, Black, Indigenous, people of color, persons with disabilities, women, and LGBTQIA+ persons continue to be largely absent in academic programs and in the geoscience workforce. There is a desire and need for new approaches, new entry points, and higher levels of engagement to foster a diverse community of researchers, scholars, and practitioners in atmospheric science. One challenge among many is that diversity, equity, and inclusion efforts are often siloed from many aspects of the scientific process, technical training, and scientific community. We have worked toward bridging this gap through the development of a new atmospheric science course designed to break down traditional barriers for entry into diversity, equity, and inclusion engagement by graduate students, so they emerge better prepared to address issues of participation, representation, and inclusion. This article provides an overview of our new course, focused on social responsibility in atmospheric science. This course was piloted during Fall 2021 with the primary objective to educate and empower graduate students to be “diversity champions” in our field. We describe 1) the rationale for a course of this nature within a graduate program, 2) course design and content, 3) service-learning projects, 4) impact of the course on students, and 5) scalability to other atmospheric science graduate programs.more » « less
-
Abstract National Aeronautics and Space Administration's Investigations of Convective Updrafts (INCUS) mission aims to document convective mass flux through changes in the radar reflectivity (ΔZ) in convective cores captured by a constellation of three Ka‐band radars sampling the same convective cells over intervals of 30, 90, and 120 s. Here, high spatiotemporal resolution observations of convective cores from surface‐based radars that use agile sampling techniques are used to evaluate aspects of the INCUS measurement approach using real observations. Analysis of several convective cells confirms that large coherent ΔZstructure with measurable signal (>5 dB) can occur in less than 30 s and are correlated with underlying convective motions. The analysis indicates that the INCUS mission radar footprint and along track sampling are adequate to capture most of the desirable ΔZsignals. This unique demonstration of reflectivity time‐lapse provides the framework for estimating convective mass flux independent from Doppler techniques with future radar observations.more » « less
-
Abstract Taiwan regularly receives extreme rainfall due to seasonal mei-yu fronts that are modified by Taiwan’s complex topography. One such case occurred between 1 and 3 June 2017 when a mei-yu front contributed to flooding and landslides from over 600 mm of rainfall in 12 h near the Taipei basin, and over 1500 mm of rainfall in 2 days near the Central Mountain Range (CMR). This mei-yu event is simulated using the Weather Research and Forecasting (WRF) Model with halved terrain as a sensitivity test to investigate the orographic mechanisms that modify the intensity, duration, and location of extreme rainfall. The reduction in WRF terrain height produced a decrease in rainfall duration and accumulation in northern Taiwan and a decrease in rainfall duration, intensity, and accumulation over the CMR. The reductions in northern Taiwan are linked to a weaker orographic barrier jet resulting from a lowered terrain height. The reductions in rainfall intensity and duration over the CMR are partially explained by a lack of orographic enhancements to mei-yu frontal convergence near the terrain. A prominent feature missing with the reduced terrain is a redirection of postfrontal westerly winds attributed to orographic deformation, i.e., the redirection of flow due to upstream topography. Orographically deforming winds converge with prefrontal flow to maintain the mei-yu front. In both regions, the decrease in mei-yu front propagation speed is linked to increased rainfall duration. These orographic features will be further explored using observations captured during the 2022 Prediction of Rainfall Extremes Campaign in the Pacific (PRECIP) field campaign. Significance StatementThis study examines the impact of terrain on rainfall intensity, duration, and location. A mei-yu front, an East Asian weather front known for producing heavy, long-lasting rainfall, was simulated for an extreme rain event in Taiwan with mountain heights halved as a sensitivity test. Reducing terrain decreased rainfall duration in northern and central Taiwan. Decreases in rainfall duration for both regions is attributed to increased mei-yu front propagation speed. This increase in northern Taiwan is attributed to a weakened barrier jet, a low-level jet induced by flow blocked by the steep mountains of Taiwan. A unique finding of this work is a change in winds north of the front controlling movement of the front near the mountains in central Taiwan.more » « less
-
Abstract Intense deep convection and large mesoscale convective systems (MCSs) are known to occur downstream of the Andes in subtropical South America. Deep convection is often focused along the Sierras de Córdoba (SDC) in the afternoon and then rapidly grows upscale and moves to the east overnight. However, how the Andes and SDC impact the life cycle of MCSs under varying synoptic conditions is not well understood. Two sets of terrain-modification experiments using WRF are used to investigate the impact of topography in different synoptic regimes. The first set is run on the 13–14 December 2018 MCS case from RELAMPAGO, which featured a deep synoptic trough, strong lee cyclogenesis near the SDC, an enhanced low-level jet, and rapid upscale growth of an MCS. When the Andes are reduced by 50%, the lee cyclone and low-level jet that develop are weaker than with the full Andes, and the resulting MCS is weak and moves faster to the east. When the SDC are removed, few differences between the environment and resulting MCS relative to the control run are seen. A second set of experiments are run on the 25–26 January 2019 case in which a large MCS developed over the SDC and remained tied there for an extended period under weak synoptic forcing. The experiment that produces the most similar MCS to the control is when the Andes are reduced by 50% while maintaining the height of the SDC, suggesting the SDC may play a more important role in the MCS life cycle under quiescent synoptic conditions.more » « less
-
Abstract A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence. Significance StatementThe main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences.more » « less
-
null (Ed.)Ensemble forecasts using the WRF Model at 20-km grid spacing with varying parameterizations are used to investigate and compare precipitation and atmospheric profile forecast biases in North and South America. By verifying a 19-member ensemble against NCEP Stage-IV precipitation analyses, it is shown that the cumulus parameterization (CP), in addition to precipitation amount and season, had the largest influence on precipitation forecast skill in North America during 2016–17. Verification of an ensemble subset against operational radiosondes in North and South America finds that forecasts in both continents feature a substantial midlevel dry bias, particularly at 700 hPa, during the warm season. Case-by-case analysis suggests that large midlevel error is associated with mesoscale convective systems (MCSs) east of the high terrain and westerly subsident flow from the Rocky and Andes Mountains in North and South America. However, error in South America is consistently greater than North America. This is likely attributed to the complex terrain and higher average altitude of the Andes relative to the Rockies, which allow for a deeper low-level jet and long-lasting MCSs, both of which 20-km simulations struggle to resolve. In the wake of data availability from the RELAMPAGO field campaign, the authors hope that this work motivates further comparison of large precipitating systems in North and South America, given their high impact in both continents.more » « less
-
null (Ed.)Abstract Ensemble forecasts using the WRF Model at 20-km grid spacing with varying parameterizations are used to investigate and compare precipitation and atmospheric profile forecast biases in North and South America. By verifying a 19-member ensemble against NCEP Stage IV precipitation analyses, it is shown that the cumulus parameterization (CP), in addition to precipitation amount and season, had the largest influence on precipitation forecast skill in North America during 2016-2017. Verification of an ensemble subset against operational radiosondes in North and South America finds that forecasts in both continents feature a substantial mid-level dry bias, particularly at 700 hPa, during the warm season. Case-by-case analysis suggests that large mid-level error is associated with mesoscale convective systems (MCSs) east of the high terrain and westerly subsident flow from the Rocky and Andes Mountains in North and South America. However, error in South America is consistently greater than North America. This is likely attributed to the complex terrain and higher average altitude of the Andes relative to the Rockies, which allow for a deeper low-level jet and long-lasting MCSs, both of which 20-km simulations struggle to resolve. In the wake of data availability from the RELAMPAGO field campaign, the authors hope that this work motivates further comparison of large precipitating systems in North and South America, given their high impact in both continents.more » « less
An official website of the United States government

Full Text Available